

Markscheme

November 2017

Chemistry

Higher level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Question	Answers	Notes	
1. a	32 - 31 - 30 - HCl 29 - 27 - 27 - 24 - 23 - 22 - 21 - 20 - 25 30 35 40 45 50 Volume of acid / cm ⁻³ 21.4 °C ✓	Accept values in the range of 21.2 to 21.6 °C. Accept two different values for the two solutions from within range.	1

-3-

C	uestic	on	Answers	Notes	Total
1.	b	<i>HCI</i> : 30.4 «° C » √		Accept range 30.2 to 30.6 °C.	
			CH₃COOH: 29.0 «°C» ✓	Accept range 28.8 to 29.2 °C.	2
1.	С		ALTERNATIVE 1 «volume CH₃COOH =» 26.0 «cm³» ✓	Accept values of volume in range 25.5 to 26.5 cm ³ .	
			«[CH ₃ COOH] = 0.995 mol dm ⁻³ × $\frac{50.0 \text{ cm}^3}{26.0 \text{ cm}^3}$ =» 1.91 «mol dm ⁻³ » ✓	Award [2] for correct final answer.	2
			ALTERNATIVE 2		2
			$«n(NaOH) = 0.995 \text{ mol dm}^{-3} × 0.0500 \text{ dm}^{3} =» 0.04975 «mol» ✓$		
			«[CH ₃ COOH] = $\frac{0.04975}{0.0260}$ dm ³ =» 1.91 «mol dm ⁻³ » ✓		
1.	d	i	«total volume = 50.0 + 26.0 =» 76.0 cm³ <i>AND</i> «temperature change 29.0 − 21.4 =» 7.6 «°C» ✓	Award [2] for correct final answer.	2
			$q = 0.0760 \text{ kg} \times 4.18 \text{ kJ kg}^{-1} \text{ K}^{-1} \times 7.6 \text{ K} = 2.4 \text{ kJ}$ ✓		-

C	Questi	ion	Answers	Notes	Total	
1.	d	ii $ (n(NaOH) = 0.995 \text{ mol dm}^{-3} \times 0.0500 \text{ dm}^{3} = \text{w} 0.04975 \text{ cmol} \text{w} $ OR $ (n(CH_3COOH) = 1.91 \text{ mol dm}^{-3} \times 0.0260 \text{ dm}^{3} = \text{w} 0.04966 \text{ cmol} \text{w} $			2	
			« $\Delta H = -\frac{2.4 \text{ kJ}}{0.04975 \text{ mol}}$ =» -48 / -49 «kJ mol ⁻¹ » ✓	Award [2] for correct final answer. Negative sign is required for M2.	2	
1.	е		CH₃COOH is weak acid/partially ionised ✓ energy used to ionize weak acid «before reaction with NaOH can occur» ✓		2	
1.	f	i	 «initially steep because» greatest concentration/number of particles at start OR «slope decreases because» concentration/number of particles decreases ✓ volume produced per unit time depends on frequency of collisions OR 		2	
			rate depends on frequency of collisions ✓			
1.	f	ii	mass/amount/concentration of metal carbonate more in X OR concentration/amount of CH₃COOH more in X ✓		1	

C	Questi	on	Answers	Notes	Total
2.	а		«series of» lines OR only certain frequencies/wavelengths ✓ convergence at high «er» frequency/energy/short «er» wavelength ✓	M1 and/or M2 may be shown on a diagram.	2
2.	b		electron transfer/transition between high«er» energy level to low«er» energy level <i>OR</i> electron transitions into first energy level causes UV series <i>OR</i> transition into second energy level causes visible series <i>OR</i> transition into third energy level causes infrared series ✓	Accept any of the points shown on a diagram.	1
2.	С		24 × 0.786 + 25 × 0.101 + 26 × 0.113 ✓ 24.33 ✓	Award [2] for correct final answer. Award [0] for 24.31 with no working (data booklet value).	2
2.	d	i	carbon: $ \frac{0.4490 \text{g}}{44.01 \text{gmol}^{-1}} = \text{w} \ 0.01020 \ \text{wmol} \text{w} \ / \ 0.1225 \ \text{wg} \text{w} $ OR hydrogen: $ \frac{0.1840 \text{g} \times 2}{18.02 \text{gmol}^{-1}} = \text{w} \ 0.02042 \ \text{wmol} \text{w} \ / \ 0.0206 \ \text{wg} \text{w} $ oxygen: $ \frac{0.1595 - (0.1225 + 0.0206) = \text{w} \ 0.0164 \ \text{wg} \ / \ 0.001025 \ \text{wmol} \text{w}}{\text{w}} = \text{w} $ empirical formula: $ C_{10}H_{20}O \checkmark $	Award [3] for correct final answer. Do not award M3 for a hydrocarbon.	3

Q	uesti	on	Answers	Notes	Total
2.	d	ii	«temperature =» 423 K OR $M = \frac{mRT}{pV}$ ✓ « $M = \frac{0.150 \text{ g} \times 8.31 \text{ JK}^{-1} \text{ mol}^{-1} \times 423 \text{ K}}{100.2 \text{ kPa} \times 0.0337 \text{ dm}^3}$ =» 156 «g mol ⁻¹ » ✓	Award [1] for correct answer with no working shown. Accept "pV = nRT AND $n = \frac{m}{M}$ " for M1.	2
2.	d	iii	C ₁₀ H ₂₀ O ✓		1
2.	е	i	Cl₂: first ✓ NO: second ✓		2
2.	е	ii	$rate = k [NO]^2 [Cl_2] \checkmark$		1
2.	е	iii	180 / 1.80 × 10 ² «dm ⁶ mol ⁻² min ⁻¹ » √		1

(Question	Answers	Notes	Total
3.	а	increasing number of protons OR increasing nuclear charge ✓ «atomic» radius/size decreases OR same number of shells OR similar shielding «by inner electrons» ✓ «greater energy needed to overcome increased attraction between nucleus and electrons»		2
3.	b	Any three of: Group 1: atomic/ionic radius increases ✓ smaller charge density OR force of attraction between metal ions and delocalised electrons decreases ✓ Group 17: number of electrons/surface area/molar mass increase ✓ London/dispersion/van der Waals'/vdw forces increase ✓	Do not accept discussion of attraction between valence electrons and nucleus for M2. Accept "weaker metallic bonds" for M2. Accept "atomic mass" for "molar mass".	3 max

C	Question		Answers	Notes	Total
3.	С		$P_4O_{10} (s) + 6H_2O (I) \rightarrow 4H_3PO_4 (aq) \checkmark$	Accept " P_4O_{10} (s) $+ 2H_2O$ (I) \rightarrow 4HPO ₃ (aq)" (initial reaction).	1
3.	d	i	«distorted» octahedral ✓	Accept "square bipyramid".	1
3.	d	ii	Charge on complex ion: 1+/+ ✓ Oxidation state of cobalt: +2 ✓		2
3.	е		Lewis «acid-base reaction» ✓ H₂O: electron/e⁻ pair donor OR Co²⁺: electron/e⁻ pair acceptor ✓		2

-9-

C	Question		Ans	wers	Notes	Total
4.	а	Lewis structure Molecular geometry Bond angles	PF ₃ IF IFI IFI trigonal pyramidal ✓ ≤109 ^{«°»} ✓	PF ₅ IFI IFI FI IEI ✓ trigonal bipyramidal ✓ 90°° AND 120°°, «180°°» » ✓	Accept any combination of dots, crosses and lines. Penalize missing lone pairs once only. Do not apply ECF for molecular geometry. Accept values in the range 95–109 for PF ₃ .	6
4.	b	PF ₃ polar AND	PF₅ non-polar √		Apply ECF from part (a) molecular geometry.	1
4.	С	sp³ √				1

	Question	Answers	Notes	Total
5.	а	ΔH^{\ominus} = [-165.2 + 2(-296.9) + 2(-92.3)] - [-454.7 + 2(-245.7)] \checkmark $\ll \Delta H^{\ominus}$ =+»2.5 «kJ» \checkmark	Award [2] for correct final answer. Award [1] for -2.5 «kJ». Do not accept ECF for M2 if more than one error in M1.	2
5.	b	« ΔS^{\ominus} = [208.5 + 2(248.1) + 2(186.8)] − [166.9 + 2(278.6)] » « ΔS^{\ominus} = +» 354.2 «J K ⁻¹ mol ⁻¹ » √		1
5.	С	«3 moles of» liquid to «4 moles of» gas OR «large» positive ΔS OR «large» increase in entropy \checkmark $T\Delta S > \Delta H$ «at the reaction temperature» \checkmark		2

– 11 –

Q	Question Answers			Notes				
6.	а	i	$K_{c} = \frac{\left[HI\right]^{2}}{\left[H_{2}\right]\left[I_{2}\right]} \checkmark$			1		
6.	а	ii	45.6 ✓				1	
6.	а	iii	$\Delta G^{\ominus} = \text{\it (-RT In } K = -\text{\it (0.006)}$	831 kJ K ⁻¹ mol ⁻¹ ×	761 K ×	In 45.6) =» – 24.2 «kJ» ✓		1
6.	а	iv		Effect		Reason	Award [1 max] if both effects are	
			Increasing the volume, at constant temperature	none/no effect	AND	same number of «gas» moles/molecules on both sides ✓	Reason for increasing volume: Accept "concentration of all reagents	2
			Increasing the temperature, at constant pressure	moves to left	AND	«forward» reaction is exothermic ✓	reduced by an equal amount so cancels out in K _c expression". Accept "affects both forward and backward rates equally."	2

C	Questi	ion	Answers	Notes	Total
6.	b	i	HCO ₃ ⁻ AND H ₂ O √		1
6.	b	ii	ecies that has one less proton/H ⁺ ion «than its conjugate acid» Property of the proton/H ⁺ from conjugate acid". Property of the proton/H ⁺ from conjugate acid".		1
6.	b	iii	oxide ion/O²- ✓		1
6.	С	i	$[H_3O^+] = 6.76 \times 10^{-5} \text{ «mol dm}^{-3} \text{» } \checkmark$ $K_a = \frac{\left(6.76 \times 10^{-5}\right)^2}{\left(0.010 - 6.76 \times 10^{-5}\right)} / \frac{\left(6.76 \times 10^{-5}\right)^2}{0.010} $ $4.6 \times 10^{-7} \checkmark$	Accept 4.57×10^{-7} . Award [3] for correct final answer.	3
6.	С	ii	$ \frac{1.00 \times 10^{-14}}{4.6 \times 10^{-7}} = 2.17 \times 10^{-8} $ $ OR $ $ \frac{1.00 \times 10^{-14}}{4.57 \times 10^{-7}} = 2.19 \times 10^{-8} \checkmark $		1

C	uestion	Answers	Notes	Total
6.	d	insufficient data to make generalization		
		OR		
		need to consider «much» larger number of acids		
		OR		
		hypothesis will continue to be tested with new acids to see if it can stand the test of time \checkmark		
		«hypothesis is false as» other acids/HCI/HBr/HCN/transition metal ion/BF ₃ do not contain oxygen		2 max
		OR		
		other acids/HCI/HBr/HCN/transition metal ion/BF₃ falsify hypothesis ✓		
		correct inductive reasoning «based on the limited sample» ✓		
		«hypothesis not valid» as it contradicts current/accepted theories/Brønsted- Lowry/Lewis theory ✓		

Question		Answers	Notes	Total
7.	a	$Ni(s) + I_2(aq) \rightarrow 2I^-(aq) + Ni^{2+}(aq) \checkmark$		1
7.	b	electron movement «in the wire» from Mn(s) to Ni(s) ✓		
		E^{\ominus} «for reduction» of Ni ²⁺ is greater/less negative than E^{\ominus} «for reduction» of Mn ²⁺		
		OR		
		Ni ²⁺ is stronger oxidizing agent than Mn ²⁺		2
		OR		
		Mn is stronger reducing agent than Ni ✓		
7.	С	«0.54 V − (−1.18 V) = +»1.72 «V» ✓	Do not accept -1.72 V.	1
7.	d	Mn «(s)» ✓		1

C	uestion	Answers	Notes	Total
7.	e	Positive electrode (anode): $2Cl^{-}(aq) \rightarrow Cl_{2}(g) + 2e^{-} \checkmark$	$Accept \rightleftharpoons$.	
		Cl ⁻ oxidized because higher concentration		
		OR		
		electrode potential/E depends on concentration		
		OR		
		electrode potential values «of H₂O and Cl⁻» are close ✓		
		Negative electrode (cathode):		
		$2H_2O(I) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$		4
		OR		4
		$2H^+(aq) + 2e^- \rightarrow H_2(g) \checkmark$		
		H ₂ O/H ⁺ reduced because Na ⁺ is a weaker oxidizing agent		
		OR		
		Na ⁺ not reduced to Na in water		
		OR		
		H ⁺ easier to reduce than Na ⁺		
		OR		
		H lower in activity series «than Na» ✓		

– 16 –

C	Question		Answers		Notes	Total	
8.	а	i	oxidation/redox <i>AND</i> acidifi <i>OR</i> oxidation/redox <i>AND</i> «acidi	·	. ,	Accept "acidified «potassium» dichromate" OR "«acidified potassium» permanganate". Accept name or formula of the reagent(s).	1
8.	а	ii	ALTERNATIVE 1 using K ₂ 0 Compound A: orange to gre		secondary hydroxyl Award [1] for "A: orange to green ANI		
			OR	5011 7 11 12 000011 aan y 11 y an o		B: no change".	
			Compound A: orange to gre	een <i>AND</i> hydroxyl oxidized	l «by chromium(VI) ions» ✓	Award [1] for "A: secondary hydroxyl AND B: tertiary hydroxyl".	
			Compound B: no change A ions» ✓		oxidized by chromium(VI)	Accept "alcohol" for "hydroxyl".	2
			ALTERNATIVE 2 using KM				_
			Compound A: purple to colourless AND secondary hydroxyl OR		Award [1] for "A: purple to colourless AND B: no change"		
			Compound A: purple to cold ions» ✓	ourless <i>AND</i> hydroxyl oxid	ized «by manganese(VII)	Award [1] for "A: secondary hydroxyl AND B: tertiary hydroxyl".	
			Compound B: no change AND tertiary hydroxyl «not oxidized by manganese(VII) ions» ✓			Accept "purple to brown" for A.	
8.	а	iii	Compound	Number of signals	Ratio of areas	Accept ratio of areas in any order.	
			A	5 √	6:1:1:1:1 ✓	Do not apply ECF for ratios.	4
			В	4 ✓	6:1:1:2 ✓		

(Question 8a continued)

Question		tion	Answers	Notes	Total
8.	а	iv	A AND it has a chiral centre/asymmetric carbon atom/carbon with 4 different substituents ✓	4 different	
8.	а	v	C_3H_7 C	Accept structures without tapered bonds.	1
8.	b		Initiation: $Br_{2} \xrightarrow{UV / hv / heat} \rightarrow 2Br^{\bullet} \checkmark$ $Propagation: \\Br^{\bullet} + C_{2}H_{6} \rightarrow C_{2}H_{5}^{\bullet} + HBr \checkmark$ $C_{2}H_{5}^{\bullet} + Br_{2} \rightarrow C_{2}H_{5}Br + Br^{\bullet} \checkmark$ $Termination: \\Br^{\bullet} + Br^{\bullet} \rightarrow Br_{2}$ OR $C_{2}H_{5}^{\bullet} + Br^{\bullet} \rightarrow C_{2}H_{5}Br$ OR $C_{2}H_{5}^{\bullet} + C_{2}H_{5}^{\bullet} \rightarrow C_{4}H_{10} \checkmark$	Reference to UV/hv/heat not required. Accept representation of radical without • (eg, Br, C₂H₅) if consistent throughout mechanism. Accept further bromination. Award [3 max] if initiation, propagation and termination are not stated or are incorrectly labelled for equations. Award [3 max] if methane is used instead of ethane, and/or chlorine is used instead of bromine.	4
8.	С		concentrated HNO ₃ AND concentrated H ₂ SO ₄ ✓	"concentrated" must occur at least once (with either acid).	1

– 18 **–**

Question		on Answers	Notes	Total
8.	d	$HNO_3 + 2H_2SO_4 \ \rightleftharpoons \ H_3O^+ + NO_2^+ + 2HSO_4^- \checkmark$	Accept: $HNO_3 + H_2SO_4 \rightleftharpoons NO_2^+ + HSO_4^- + H_2O$	
			Accept: $HNO_3 + H_2SO_4 \rightleftharpoons H_2NO_3^+ + HSO_4^-$.	
			Accept single arrow instead of equilibrium sign.	1
			Accept equivalent two step reactions in which sulfuric acid first behaves as strong acid and protonates nitric acid, before behaving as dehydrating agent removing water from it.	
8.	е	H_3C CH_3 H_3C CH_3		
		curly arrow showing Br⁻ leaving √	Do not accept curly arrow originating from C of C–Br bond.	
		representation of tertiary carbocation ✓		4
		curly arrow going from lone pair/negative charge on O in ⁻OH to C⁺ ✓		4
		formation of (CH₃)₃COH AND Br ⁻ ✓	Do not accept arrow originating on H in ⁻OH.	
			Accept Br ⁻ anywhere on product side in the reaction scheme.	
			Award [2 max] for an Sn2 type mechanism.	